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Abstract. A semi-infinite crack terminating at the boundary of an elastic half-space is considered. It is assumed
that the crack is subjected to a mode-I load applied in a finite region remote from the crack plane, and the boundary
of the half-space and the crack surfaces are free of tractions. The problem is formulated in terms of a hypersingular
integral equation with respect to the relative crack-face separation defined over the region occupied by the crack.
The behaviour of the solution near the corner point where the crack edge intersects the boundary is analysed and
results which show the dependence of the stress singularity exponent on the angle of inclination of the crack edge
are presented.
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1. Introduction

The problem to be addressed in this work may be explained by reference to Figures 1 and
2. Figure 1 illustrates a surface-breaking crack. It is idealised as a plane sSrfabeh
intersects with a specimen boundary, idealised in the figure as thexglan®. Away from the
specimen boundary, if linear elasticity is assumed, the stresses display the usual square-root
singular behaviour in the vicinity of the crack edge. Itis of fundamental interest to comprehend
the singular behaviour of the stresses in the vicinity of a p@nin Figure J of intersection of

the crack boundary with the surface of the specimen. This can be investigated by magnifying
the vicinity of the pointO as illustrated in Figure 2. Here, the crack appears as an infinite plane
region whose edge, now straight, intersects the free surfageRelative to polar coordinates

(p, 0, ¢), the displacement field is assumed to have the asymptotic form

u=p"U(A; 0, ¢). (1)

The displacement field has to satisfy the Lamé equations of linear elasticity and the con-
ditions that traction components are zero on the crack faces and on the specimen surface
X3 = 0.
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Figure 1. Surface-breaking crack in a half-space. Figure 2. Crack geometry near the termination
point O.

The corresponding stresses are proportionalto!. Interest in singular stresses restricts
concern to values ol for which ReA < 1. Boundedness of displacements corresponds to
ReA > 0. The weaker requirement of locally integrable energy density provides the restriction
ReA > —1. In this work, real values of\ in the range-3 < A < 1 will be investigated.

The problem already has a substantial history. Benthem [1, 2] took the crack and the straight
edge to be normal to the free surface so that, relative to Figure 2, it occupies the quarter-
plane{x; > 0,x, = 0, x3 > 0}. He found three independent solutions of the form (1). One,
corresponding to pure mode-I symmetry (only the displacemeli$ discontinuous across

S), displayed a smaller value @f than the other two (for which only, had no discontinuity
corresponding to mixtures of modes Il and IIl). All's found by Benthem were real and
positive. The values af were found to depend on Poisson’s ratid-olias [3, 4] considered

the mode-1 problem for the same geometry but obtained real and negative values Tare

work of Benthem and of Folias was semi-analytic, employing eigenfunction expansions whose
coefficients satisfied an infinite system of linear algebraic equations. BaZant and Estenssoro
[5] performed numerical analysis by employing a finite-element formulation. The flexibility
thereby afforded allowed them to address the problem of a plane crack with any orientation
relative to the free surface. When specialized to the geometry considered by Benthem, their
results tended to agree with Benthem (definitely not Folias), mesh refinement producing res-
ults whose formal extrapolations were close to those of Benthem. Accordingly, all of their
presented results were obtained by extrapolation from their computed results, rather than
directly.

There appears still to be some confusion about the correct value dhe analytical
solution derived by Leung and Su [6] for the same geometry as in [1] by superposition of
two singular solutions — the one for a crack in an elastic space and the other one due to a
singular tractions on the free surface — displays no dependenteoafthe Poisson ratio.

Dhondt [7] constructed the Green function for a mode-I semi-circular crack and deduced that
the corresponding stress intensity factor has a logarithmic singularity at the free surface. The
results of Leung and Su [6] and Dhondt [7] disagree with those of Benthem [1], BaZzant and

Estenssoro [5], and Folias [3, 4].

Therefore, study of the problem by a different method seems justified. Any problem for
a crack in a body, whether surface-breaking or not, can be formulated quite concisely as a
system of hypersingular integral equations for the jump in displacements across the crack
surfaceS. The implementation is particularly easy for a crack in an infinite body [8, 9], but

1 This motivated our decision to investigate the rang%< A < 1inthe present work.
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it can also be carried through in the case of a crack in a half-space, because the associated
Green's function is known explicitly [10]. For mode-I loading of a crack occupying a region

on the plane:, = 0, the relevant equation has been derived and discussed by Mbairf8].
However numerical analysis of the corner singularity was not attempted. The present study
fills that gap. Thus, for the asymptotic problem, the crack is taken to occupy the portion

M ={x;=pcosH, x3=psSiNG,0< 0 <a,0< p < o0} (2)

of the planex, = 0 (equivalently,¢ = 0 or ). The equation governing the jump in the
displacement component is given explicitly in the next section, and some of its essential
properties are investigated in Section 3. Section 4 reports results, which were obtained by
discretization and investigation of the determinant of the resulting matrix as a function of
A, for different values of Poisson’s ratio and crack intersection angte The governing
eguations are homogeneous, so the allowed valua @f that for which the determinant

is zero. Full discussion is deferred until after presentation of the results, but it is perhaps
appropriate to state here that only one raalvas found for eachv and«, and these agree
closely with the values found by Benthem whenr= 7 /2. The integral-equation method can

also be applied to the case of a surface-breaking crack extending dynamically. Such a study is
in progress and will be reported separately.

2. Governing equations

Consider an isotropic elastic half-spagé = {x € R®: x3 > 0} containing a crack in the
x1xz-plane. Formally, the crack occupies the regfon (x1, x3) € M, x, = 0}. In the general
case,M may or may not contain points of the boundagy= 0 of the half-space — that is, the
crack may or may not be surface-breaking.

Assume that the crack is subjected to a mode-lI symmetric load applied in a finite f&gion
remote from the crack plane, and the boundary of the half-s@ﬁ@eand the crack surfaces
I',, T'_ are free of tractions.

The displacement field in the body consists of two parts: the displacementuffesdy,
which would be generated by the applied load in the absence of the crack, and the displace-
ment field,u say, induced by the presence of the crack.

A formal application of Betti's theorem yields

aG(P)
up(x') = / [:1(x) cijru———(x, x") n;(x) ds,, (3)
M

8X1
where[u] = ([u1], [u2], [u3]) denotes the relative displacement of the crack faggs,are
the components of the tensor of elastic moduli,

E 2v
20+v) |1—2v
E andv are the Young modulus and the Poisson ratio respectivel\Gandx') = (G® (x, x'),
G®(x,x"), G (x, x") is the Green tensor for the half-spaca’ (x, x’) is thek-component
of the displacement at produced by a unit body force applied in thdirection atx’. Since

the system of coordinates used here is the same as in [10], we do not present the formulae for
the components of the Green ten&x, x’) and refer the reader to [10]

Cijkl = 8ijOk + 8udjr + (Sik(sjl} ,

2 The components af (x, x') are also given explicitly in [8], except that [8] discusses the half-space 0,
resulting in interchange of suffixes 2 and 3 relative to our work.
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The corresponding stress field is given by

82G,({p)(x, x')
8x18x;

Ors (u; x/) = Crspq / [ul](x) Cijki n; (X) de. (4)
M

For mode-I loading, only the second compongnf of the displacement fielfl] differs
from zero; it vanishes like the square rooteof- 6 asé — «, with p fixed, and satisfies the
eqguation

/ [uz](x1, x3) (K*(x1 — x7, x3 — x3) + Ko(x1, x3; x7, x3)) dxq dxs
M

= 020(u® x1, x3), (x,x5) € M. (5)

The kernelk (x1, x3; x7, x3) = K*(x1 — x7, x3 — x3) + Ko(x1, x3; x7, x3) is hypersingular. Its
singular partk* is associated with the Green tensor for a whole space and has the form

E

8t (1-1?)R¥ ©)

K*(x1 — x, X3 — x3) =
The regular parKy is associated with the ‘correction’ required to render the boundagy O
free of tractions, and is given by

Ko(x1, x3; X7, X3)

B E |:2v -5 18xx; 120 —-v)(1—2v)
-~ 8r(1-v) | R R3 Ra(Ry + x3 + x5)?

(7)

6v(x3 + x5)%  6v(3—4v)(x1 — x’l)2:|
R} R} ’

where

R, = \/(xl — xi)z + (x3 — xé)z, R, = \/(xl _ x’l)Z + (x3+ xé)Z.
Equation (5) follows from (4) and the boundary condition
020U x') + oo(u; x') =0, x €Ty,

It coincides (apart from replacement.of with x andxsz with y) with the equation presented
and analysed by Martiat al.[8]. They discussed existence and unigqueness of its solution and
remarked on the need for quantitative evaluation of the singularity at a point where the crack
edge meets the free surfagg = 0. The present study has the latter objective, for which it
suffices to specialize the domalf to the form (2).

Numerical calculations require explicit treatment of the hypersingularigadf the kernel
in (5). The integral is interpreted in the finite-part Hadamard sense [11], or equivalently in
the sense of generalized functions [12]. Movchan and Willis [9] proposed the addition and
subtraction of the first two terms of the Taylor expansiofuef about the point of evaluation,
coupled with explicit treatment of the ‘linear approximation’[tg] by transformation to an
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integral around the boundady/, exploiting the fact that, in two dimensions(1/r) = 1/r3,
wherer? = (x; — x7)? + (x3 — x3)? and A is the Laplacian. Adapting that proposal to the
present situation, we may define the singular integral by

/ [u2](x1, x3) K™ (x1 — x7, x3 — x3) dxg dxz
M

0[u>]

=/ K*(xq — x, X3 — x3) {[M](Xl,xs) — [u2](xg, x3) — (x1 — x3)—— 5 (x1, x3)
Mpg 1
_(x —x)[u](x x) dxdx
3 3 %3 1> X3 1843
20
—1—/ ds [8— {[Mz](x/l, xz) + (X1 — xl) Ol 2]( X1, X3)
IMg n
/ 8[ ] / /
+ (x3 — x}) az ), xs)}
oluzl, , ouzl ,
—-0O {nla—;ti(xl, x3) + nsa—zz{xl’ x3)}:|
E [u2](x1, x3) dxy dyg ®)

87 (L —v2) Sy, (1 — X2 + (x3 — x5)2)%/2]

whereMy = {x e M : x2 +x2 < R?}, and® = —E[87 (1 — v?)R;]™L. Itis only necessary
thatR > p’ = (x7? + x2)¥/2, so that the last integral in (8) is regular. In the computations, in
fact, R was taken to be 2.

3. Investigation of the singularity

We study the singularity by postulating a solution of timmogeneoustegral equation (5)
of the form

[uz] = p™ £(6). 9)

Thus,u® = 0 ando,,(u°; x1, x3) = 0, and a non-trivial solution of the form (9) will exist
only whenA is an eigenvalue. The integrals with respecptare either treated explicitly or
reduced to integrals over finite intervals and evaluated numerically (see Appendix A). In turn,
the terms have the forms listed below.

K*(x1 — x71, x3 — x5){[u2](x1, x3) — [uz](x7, x3)
Mg

—(x1 — xPD[uzl 1(x7, x5) — (x3 — x3)[u2] 3(x7, x53)} dxq dx3

E(p/)Ail * 4 / / / / /
e (l_ 12 / {11(0,0") f(0) — 12(0,0") f(0') — 13(6,0") f'(6")} dO, (10)
7(1—v?) Jo
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zp/ l 8® / / / / / / / /
/ do [;5{[1/!2]()61, xz) 4+ (x1 — xp)[u2] 1(x7, x3) + (x3 — x3)[u2] 3(x7, x3)}
0

® 0 o
———{(x1 — x))[u2l 1(x7, x3) + (x3 — x3)[uz] 3(x7, Xé)}}

p 00 0=0
= —m{[h(a, 0") — J1(0,6)1f(0")
+ [J2(a, 0") — J2(0,0)11'(0")}, (11)
* / a® / / / / / / / /
/ (20") do [%{[uz](xl, x3) + (x1 — xp)[u2] 1(x1, x3) + (x3 — x3)[u2] 3(x7, x3)}
0
0
—@)8—{()61 — xp)u2] 1(x1, x5) + (x3 — xg)[u2] 3(x7, xé)}]
P p=2p'
_ E(p/)Ail Ja(6' 9 Ja@) (6 (12)
__7871(1—1)2){ 3(07) f(0) + Ja(0) ()},

/ i / pdpK* (x1 — x}., x3 — x})[u2)(x1. x3)
0 2p'

B E(p/)Afl o ,
= —mfo do14(6,6") f(0), (13)
/ Ko(x1, x3; x7, x3)[u2](x1, x3) dxq dxg = (,O')A_lf dOKo(A; 6,6")f(6). (14)
M 0

The functionsl; to I, J1 to J; and K, are given explicitly in Appendix A. The homogen-
eous equation (5) now implies that

/0 {1(0,0) f(0) — [(0,0") f(0") — I3(0,6") f'(6")} dO

“ , 8r(1—v?) [% . ,
+/ 14(9,9)f(9)d9—T/ Ro(A: 0,0 £(6) o
0 0

+ [Ji(e, 0) — J1(0,0) + J3(0N1f (0") + [Ja(er, 0") — J2(0,6') + Ja(0)1f'(®') = 0. (15)

It is appropriate to discuss the anticipated form fap). The regularization procedure
ensures that all integrals exist for ady € (0, ). The expression on the left side of (15)
could, however, become singular &s— 0 or8’ — «. Considering firsp’ — «, we may
verify that

Ji(e,0) ~ —2(a—0)"1 asb — a. (16)

Therefore, the left side of (15) has an unacceptably strong singularity, ufle$s= 0. This
is nothing more than the requirement that the relative displacement should tend to zero as the
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crack edge is approached it will be assumed without further discussioif thiahas the form
(a — 0)Y2g(6), whereg(#) is bounded nea# = o, consistent with the known behaviour of
the relative displacement near any smooth crack boundary. It can be verified similarly that

J1(0,60) ~ 20"t aso — 0. (17)

There is, however, a compensating term that comes from the integral involving the ‘image’
term K. In fact, asymptotically, fo, 6’ — 0,

Ko(A; 0,0") ~ (18)

E 1 _ 1200
Ar(1—v?) | (0+6)2 O+

which is consistent precisely with the ‘image’ term for the corresponding kernel for a crack in
two dimensions [8]

~ E 1 12x3x!
X el de = B 3 | 19
/oo 0(x1, ¥3: Xy, X3) Gy 4 (1 —v2) {(X3 +x3)?  (x3+ xé)“} 49

Asymptotically, therefore, &8 — 0,

_ 2 o
M/ Ro(A:6,6") f(0)do
E 0

(20)

« 1 1266 £
f(o)/o {<9+0/)2_<9+904}d@‘_ o

Thus, as expected, the opening of the crack at its intersection with the free surface is allowed
to be finite and non-zero.

The procedure now is to discretize (15), and to calculate the determinant of the resulting
matrix (A, say) multiplying the vector of nodal values 6t6’) as a function ofA. An approx-
imation to the desired eigenvalue is then delivered by a value foir which the determinant
vanishes.

The interval(0, «) was sub-divided intaV equal interval§(6;-1,6,); j = 1,2,... N},
where

0, =xh; h=a/N (21)

and (15) was satisfied at the mid-poit¥s= 6;_1,» (j = 1,2,... N). Since all of the in-
tegrands are continuous, the simplest numerical scheme would be to evaluate the integrals by
the mid-point rule. However, the first group of terms, involvihg/, and/s, have an apparent
singularity a¥ = 6’. We avoided evaluation of the integrand at poéhts 0;_1,, by a limiting
procedure by estimating the integral over ftik interval as: times the value of the integrand

atapoint;_, , different from the mid-poin®;_, .. Because the integrand at least contains a

factor (@ — 6)"? neard = «, 07_, , was chosen so that

0
/0 (0 —0)2d0 = h(a — 07_y "> (22)

Jj—1
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exactly. Thus,

4
9h2

This quadrature rule is exact when the integrand has thedawa 6)Y/2+ b for any constants
a andb. It can be checked th@;ﬁl/z —0j_12 > 0, increases monotonically witp, and
On_1/2 — On-1/2 = 0-0555.. . h. The terms involvingf (¢) and f’(6") still require evaluation
of these functions &’ = 6;_1/.. These are expressed in terms of the unknoyuts_, ,) by
use of simple extrapolations, based upon approximafi@ in the vicinity of6;_1,, as

07 4 =a [(a — (= DI¥? = (a — j)*?)%. (23)

fO) ~aj@—6)"2+b;, (24)

with a; andb; fixed by requiring equality a&& = 67, , and® = 67, ,, with the convention
thatoy ., = . Thus,

f(ej_l/z)[(a_9)1/2_(a_97_;.1/2)1/2]"‘]((9;‘4_1/2)[(a_ej_l/z)l/z_(a_e)l/z]
(@—=07_y )P —(a—=07,1,5)"?

fo)~ . (25)
[f(9;+l/2) - f(ej_l/z)](a - 9)71/2

. 26
2[(0( _ 9;&71/2)1/2 _ (0[ _ 9;<+1/2)1/2] ( )

@)~

det A

6. -0 0. 04 06 08 1 0. L L ; . . . L . y
04 02 0 2 0 005 01 o015 02 025 03 035 04 045 05

A v

Figure 3. detA as a function ofA, for @« = 7/2, Figure 4. The singularity exponem as a function of
v =03. the Poisson ratio, for « = /2. The results obtained
by Benthem [1, 2] are marked by

4. Numerical results

The results of numerical calculations are presented in Figures 3 to 5 which were obtained by
taking N = 100. In Figure 3 the values of the determinant ofare plotted againsA. The
smallest value ofA at which the determinant is equal to zero characterizes the singularity in
stresses at the corner point. Note that no values,ofith 0 > A > —%, at which de = 0

were found. This means that the displacement field at the corner point is bouinded.

3 This confirms the results of [1, 2] and [5], but disagrees with those of [3, 4].
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Figure 5. The singularity exponem as a function of the angte, for v = 0-3. The result of BaZzant and Estenssoro
[5] is marked by.

Figure 4 exhibitsA as a function of the Poisson ratio One can see that the values of
A given by the numerical scheme above agree with those of Benthem [1] shown in Figure 4
by ‘x’ for comparison. Note that similar values af have been also obtained by BaZant and
Estenssoro [51.

In Figure 5 the exponemt is plotted as a function of the angleof inclination of the crack
edge. It decreases from 1 gowhena goes from 8 to ~ 11(°. In Figure 5 we also present
the result of Bazant and Estenssoro [5]. The angé whichA = % (i.e. at which the stress
singularity at the corner point is the same as at any other point at the crack edge) predicted
by the scheme above does not agree with that of [5] but it is much closer to the experimental
value~ 112 reported by Bell and Feeney [13].

A paper by Glushkov, Glushkova and Lapina [14] appeared after our calculations were
completed. Glushkoet al. treat a range of problems which involve corner points, including
the problem discussed in this article. Their method was, in essence, to apply a Mellin transform
to Equation (5) so generating an integral equation in the angular vasialibepresent nota-
tion). The corner singularity is analysed by making an assumption equivalent to our Equation
(9) Mellin transformed with respect {o.

Glushkovet al. discretized their equation (relative to present notation) by expreggifig
in the form f(0) = 6% (a — 0)%2g(0) for some smoottg(6). They tooks, = 3 (c.f. the
present Equation (22)) but claimed a failure to obtain convergence with the choiee0.
Instead, their results were computed with= 1, with the built-in restriction thatf (0) = 0,

i.e. that the opening of the crack at the free surface associated with the most singular term is
zero. This is surprising physically and does not conform to what the present numerical scheme
generated. The computed values fofactually, Glushkoet al.gave 1— A) display the same
trends as in Figure 5 but are not in close agreement.

The method described above allows one to evaluate the stress singularity exfpondnt
at the corner point where the crack edge intersects the boundary. This method can also be
applied to a surface-breaking crack propagating dynamically in a plane orthogonal to the free
surface. The work is in progress.

4 Kawaiet al.[1] obtainedA = 0-3 for v = 0 as the lowest root of the equation det= 0. This disagrees with
Benthem [1, 2] and BaZant and Estenssoro [5], as well as with our solution.
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Appendix A

Here we give the representations for the quantifig® I, J; to J, and K, (formulae (10) to
(14)). They are as follows

16,0 = /2 P dp
YU Jo (L4 5% — 25 cos6 — 67))3/2

B A+1 Lo N A )
= T cos00) Js (1_Z)A[1—§t(1+cos(9—9 NN de—14(0,60"), (A1)

6.6 — 1—A [ 1—20019—6’)}

sif@@ —6) |~ 5—4cosd —0)
+A cos (6 —0") <1— 1 )
Sinf (0 — 6") V5 —4cog0 — )
2A cos@ — 0)cod2(0 — 0]
SirP(® — 0")/5— 4 cog6 — 0)

J/5—4cos0 —0') +2—cog6 — 9’)]
1—cos6 —6) ’

(A2)

+Acosd —6)In [

156.6') = cog — ¢’ (1_ 1 )
V0T Sine — 6 J5—_4cog0 - 0)

2cog2(6 — 6M]
sin(@ — 0")4/5—4cod6 — ')

JV5—4cog6 —0') +2—cos6 —0')
1—cos6 —0) ]

+sin(® —6")In [ (A3)

14(0’ 9/) _ /oo p~A+l d,5
> (14 p?—2p cos(f — 6"))%/?
1 —nrtldr

1/3
- /o tA[1—2r(1— 1)(1+ cogd — 6)32’ (Ad)

J1(0,60") =

1 |: 2—cog0 — 0"

TSn@—0) | Js-dcosa—0) | cos —0 )]

LA sin@ — 691 [\/5 —4co96 —6') +2—cog0 — 9’)]

1—cog6 —9)
2A sin(@ — 0)
V5 —4cod0 —6)’

(A5)
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1—2cog6 —0)
/b—4cog6 — @)

J2(0,0") =

_COS(G_9,)In[J5—4co$9—0’)+2—cos(9—9’)], (A6)
1—cog6 — 0"
A 8 2¢/2 8 242
RO =3 {“ (5 ) T) o (5 ) T)}
—(143A) |:E (59,, &> +E (5a_9,, &ﬂ
3 3
e (3. 22) e (1 22)] -

Ja(0) = §( = - = )
T 2\B—4dcosa—0) /5-_4cos
—3(/5—4 coda — 0') — /5 — 4 coshd). (A8)

In (A7) E, F andII are the elliptic integralsy, = sin"Y3/(1T = cosH)/[2(5 — 4 coh)]}.
Ko(A; 0, 0") is the Mellin transform ofKo(p, 0; p’, 8") = (p")"3Ko(p; 0, 0") with respect to
p=p/p,withs = A + 2,

Ko(A; 6,0

__E _AA+D ], P co86 +67)
8(1—v?2) sintA V1—co2(0 +6)

_ _ 0 -2 _ ’
+3(A +2)(1— A) [1_ 1 — cos(® 9)] P, 2(—cos(f +0")

1—cos(@ + 6 1+ cos(® + 6)

P t(—cos@ +6))
V1—co2 (6 +0)

+4v(1 — 2v) {[(A +2)cosl + (1 — A) cos6']

+A+2(A-A) [—

cog6 + 0')(sif 6 + sirfe’)  cos6 — 0') — cos6 + 9’)}
1—co96 +6) 1—co96 +¢)

P %(—cog6 +6")) sint A
X
1+ cog6 + 0’) TAA +1)
® 121 —v)(1 —2v)pr 1 dp
0o /14 p2—2p cogb +6)

(A9)

[V1+ 52— 25 cos(6 +6') + j sing + sine’]z} '



154 N. V. Movchan and J. R. Willis

In (A9) P,*, P,? are the associated Legendre functions= 3 — 4v. By the coordinate
transformations = (1 — )/t the last integral in (A9) is reduced to an integral over a finite
interval,

00 ﬁAJrl dﬁ

/o V14 52 —2p cos(® +0)[/1+ p2 — 2 cos(® +6') + p sind + sing’]?
B /l (1 _ t)A+1 dr
Jo tA/I=2r(T—= 1A+ cog0 +0)[vI—2r(L—1)(L+ cog0 +6))

+¢(sing’ — sinB) + sing 1?2’

and it is evaluated numerically. The same coordinate transformation was used in (A4).
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