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Abstract. A semi-infinite crack terminating at the boundary of an elastic half-space is considered. It is assumed
that the crack is subjected to a mode-I load applied in a finite region remote from the crack plane, and the boundary
of the half-space and the crack surfaces are free of tractions. The problem is formulated in terms of a hypersingular
integral equation with respect to the relative crack-face separation defined over the region occupied by the crack.
The behaviour of the solution near the corner point where the crack edge intersects the boundary is analysed and
results which show the dependence of the stress singularity exponent on the angle of inclination of the crack edge
are presented.
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1. Introduction

The problem to be addressed in this work may be explained by reference to Figures 1 and
2. Figure 1 illustrates a surface-breaking crack. It is idealised as a plane surfaceS which
intersects with a specimen boundary, idealised in the figure as the planex3 = 0. Away from the
specimen boundary, if linear elasticity is assumed, the stresses display the usual square-root
singular behaviour in the vicinity of the crack edge. It is of fundamental interest to comprehend
the singular behaviour of the stresses in the vicinity of a point(O in Figure 1) of intersection of
the crack boundary with the surface of the specimen. This can be investigated by magnifying
the vicinity of the pointO as illustrated in Figure 2. Here, the crack appears as an infinite plane
region whose edge, now straight, intersects the free surface atO. Relative to polar coordinates
(ρ, θ, ϕ), the displacement field is assumed to have the asymptotic form

u = ρ3U(3; θ, ϕ). (1)

The displacement fieldu has to satisfy the Lamé equations of linear elasticity and the con-
ditions that traction components are zero on the crack faces and on the specimen surface
x3 = 0.
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Figure 1. Surface-breaking crack in a half-space. Figure 2. Crack geometry near the termination
pointO.

The corresponding stresses are proportional toρ3−1. Interest in singular stresses restricts
concern to values of3 for which Re3 <1. Boundedness of displacements corresponds to
Re3 > 0. The weaker requirement of locally integrable energy density provides the restriction
Re3 > −1

2. In this work, real values of3 in the range−1
2 < 3 < 1 will be investigated.

The problem already has a substantial history. Benthem [1, 2] took the crack and the straight
edge to be normal to the free surface so that, relative to Figure 2, it occupies the quarter-
plane{x1 > 0, x2 = 0, x3 > 0}. He found three independent solutions of the form (1). One,
corresponding to pure mode-I symmetry (only the displacementu2 is discontinuous across
S), displayed a smaller value of3 than the other two (for which onlyu2 had no discontinuity
corresponding to mixtures of modes II and III). All3’s found by Benthem were real and
positive. The values of3 were found to depend on Poisson’s ratioν. Folias [3, 4] considered
the mode-I problem for the same geometry but obtained real and negative values for31. The
work of Benthem and of Folias was semi-analytic, employing eigenfunction expansions whose
coefficients satisfied an infinite system of linear algebraic equations. Bažant and Estenssoro
[5] performed numerical analysis by employing a finite-element formulation. The flexibility
thereby afforded allowed them to address the problem of a plane crack with any orientation
relative to the free surface. When specialized to the geometry considered by Benthem, their
results tended to agree with Benthem (definitely not Folias), mesh refinement producing res-
ults whose formal extrapolations were close to those of Benthem. Accordingly, all of their
presented results were obtained by extrapolation from their computed results, rather than
directly.

There appears still to be some confusion about the correct value of3. The analytical
solution derived by Leung and Su [6] for the same geometry as in [1] by superposition of
two singular solutions – the one for a crack in an elastic space and the other one due to a
singular tractions on the free surface – displays no dependence of3 on the Poisson ratioν.
Dhondt [7] constructed the Green function for a mode-I semi-circular crack and deduced that
the corresponding stress intensity factor has a logarithmic singularity at the free surface. The
results of Leung and Su [6] and Dhondt [7] disagree with those of Benthem [1], Bažant and
Estenssoro [5], and Folias [3, 4].

Therefore, study of the problem by a different method seems justified. Any problem for
a crack in a body, whether surface-breaking or not, can be formulated quite concisely as a
system of hypersingular integral equations for the jump in displacements across the crack
surfaceS. The implementation is particularly easy for a crack in an infinite body [8, 9], but

1 This motivated our decision to investigate the range−1
2 < 3 < 1 in the present work.
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it can also be carried through in the case of a crack in a half-space, because the associated
Green’s function is known explicitly [10]. For mode-I loading of a crack occupying a region
on the planex2 = 0, the relevant equation has been derived and discussed by Martinet al. [8].
However numerical analysis of the corner singularity was not attempted. The present study
fills that gap. Thus, for the asymptotic problem, the crack is taken to occupy the portion

M = {x1 = ρ cosθ, x3 = ρ sinθ,0< θ < α,0< ρ <∞} (2)

of the planex2 = 0 (equivalently,ϕ = 0 or π). The equation governing the jump in the
displacement componentu2 is given explicitly in the next section, and some of its essential
properties are investigated in Section 3. Section 4 reports results, which were obtained by
discretization and investigation of the determinant of the resulting matrix as a function of
3, for different values of Poisson’s ratioν and crack intersection angleα. The governing
equations are homogeneous, so the allowed value of3 is that for which the determinant
is zero. Full discussion is deferred until after presentation of the results, but it is perhaps
appropriate to state here that only one real3 was found for eachν andα, and these agree
closely with the values found by Benthem whenα = π/2. The integral-equation method can
also be applied to the case of a surface-breaking crack extending dynamically. Such a study is
in progress and will be reported separately.

2. Governing equations

Consider an isotropic elastic half-spaceR3+ = {x ∈ R3 : x3 > 0} containing a crack in the
x1x3-plane. Formally, the crack occupies the region{x : (x1, x3) ∈ M, x2 = 0}. In the general
case,M may or may not contain points of the boundaryx3 = 0 of the half-space – that is, the
crack may or may not be surface-breaking.

Assume that the crack is subjected to a mode-I symmetric load applied in a finite regionV

remote from the crack plane, and the boundary of the half-space∂R3+ and the crack surfaces
0+, 0− are free of tractions.

The displacement field in the body consists of two parts: the displacement field,u0 say,
which would be generated by the applied load in the absence of the crack, and the displace-
ment field,u say, induced by the presence of the crack.

A formal application of Betti’s theorem yields

up(x
′) =

∫
M

[ui](x) cijkl ∂G
(p)

k

∂xl
(x, x ′) nj (x) dsx, (3)

where[u] = ([u1], [u2], [u3]) denotes the relative displacement of the crack faces,cijkl are
the components of the tensor of elastic moduli,

cijkl = E

2(1+ ν)
{

2ν

1− 2ν
δij δkl + δilδjk + δikδjl

}
,

E andν are the Young modulus and the Poisson ratio respectively, andG(x, x′) = (G(1)(x, x ′),
G(2)(x, x ′),G(3)(x, x ′)) is the Green tensor for the half-space:G

(i)
k (x, x

′) is thek-component
of the displacement atx produced by a unit body force applied in thei-direction atx′. Since
the system of coordinates used here is the same as in [10], we do not present the formulae for
the components of the Green tensorG(x, x ′) and refer the reader to [10]2.

2 The components ofG(x, x′) are also given explicitly in [8], except that [8] discusses the half-spacex2 > 0,
resulting in interchange of suffixes 2 and 3 relative to our work.
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The corresponding stress field is given by

σrs(u;x ′) = crspq
∫
M

[ui](x) cijkl ∂
2G

(p)

k (x, x ′)
∂xl∂x

′
q

nj (x) dsx. (4)

For mode-I loading, only the second component[u2] of the displacement field[u] differs
from zero; it vanishes like the square root ofα − θ asθ → α, with ρ fixed, and satisfies the
equation∫

M

[u2](x1, x3) (K
∗(x1 − x′1, x3 − x′3)+K0(x1, x3; x′1, x′3))dx1 dx3

= σ22(u
0; x′1, x′3), (x′1, x′3) ∈ M. (5)

The kernelK(x1, x3; x′1, x′3) = K∗(x1− x′1, x3− x′3)+K0(x1, x3; x′1, x′3) is hypersingular. Its
singular partK∗ is associated with the Green tensor for a whole space and has the form

K∗(x1− x′1, x3 − x′3) = −
E

8π(1− ν2)R3
1

. (6)

The regular partK0 is associated with the ‘correction’ required to render the boundaryx3 = 0
free of tractions, and is given by

K0(x1, x3; x′1, x′3)

= − E

8π(1− ν2)

[
2ν − 5

R3
2

+ 18x3x′3
R5

2

+ 12(1− ν)(1− 2ν)

R2(R2+ x3+ x′3)2

+6ν(x3 + x′3)2
R5

2

+ 6ν(3− 4ν)(x1 − x′1)2
R5

2

]
, (7)

where

R1 =
√
(x1− x′1)2+ (x3− x′3)2, R2 =

√
(x1− x′1)2+ (x3 + x′3)2.

Equation (5) follows from (4) and the boundary condition

σ22(u
0;x ′)+ σ22(u;x ′) = 0, x′ ∈ 0±.

It coincides (apart from replacement ofx1 with x andx3 with y) with the equation presented
and analysed by Martinet al. [8]. They discussed existence and uniqueness of its solution and
remarked on the need for quantitative evaluation of the singularity at a point where the crack
edge meets the free surfacex3 = 0. The present study has the latter objective, for which it
suffices to specialize the domainM to the form (2).

Numerical calculations require explicit treatment of the hypersingular partK∗ of the kernel
in (5). The integral is interpreted in the finite-part Hadamard sense [11], or equivalently in
the sense of generalized functions [12]. Movchan and Willis [9] proposed the addition and
subtraction of the first two terms of the Taylor expansion of[u2] about the point of evaluation,
coupled with explicit treatment of the ‘linear approximation’ to[u2] by transformation to an
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integral around the boundary∂M, exploiting the fact that, in two dimensions,1(1/r) = 1/r3,

wherer2 = (x1 − x′1)2 + (x3 − x′3)2 and1 is the Laplacian. Adapting that proposal to the
present situation, we may define the singular integral by∫

M

[u2](x1, x3)K
∗(x1− x′1, x3 − x′3)dx1 dx3

=
∫
MR

K∗(x1− x′1, x3− x′3)
{
[u2](x1, x3)− [u2](x′1, x′3)− (x1− x′1)

∂[u2]
∂x1

(x′1, x
′
3)

−(x3 − x′3)
∂[u2]
∂x3

(x′1, x
′
3)

}
dx1 dx3

+
∫
∂MR

ds

[
∂2

∂n

{
[u2](x′1, x′3)+ (x1− x′1)

∂[u2]
∂x1

(x′1, x
′
3)

+ (x3 − x′3)
∂[u2]
∂x3

(x′1, x
′
3)

}

−2
{
n1
∂[u2]
∂x1

(x′1, x
′
3)+ n3

∂[u2]
∂x3

(x′1, x
′
3)

}]

− E

8π(1− ν2)

∫
M\MR

[u2](x1, x3)dx1 dx3

((x1− x′1)2+ (x3 − x′3)2)3/2
, (8)

whereMR = {x ∈ M : x2
1 + x2

3 < R2}, and2 = −E[8π(1− ν2)R1]−1. It is only necessary
thatR > ρ ′ = (x′21 + x′23 )1/2, so that the last integral in (8) is regular. In the computations, in
fact,R was taken to be 2ρ ′.

3. Investigation of the singularity

We study the singularity by postulating a solution of thehomogeneousintegral equation (5)
of the form

[u2] = ρ3f (θ). (9)

Thus,u0 = 0 andσ22(u
0; x1, x3) = 0, and a non-trivial solution of the form (9) will exist

only when3 is an eigenvalue. The integrals with respect toρ are either treated explicitly or
reduced to integrals over finite intervals and evaluated numerically (see Appendix A). In turn,
the terms have the forms listed below.∫

MR

K∗(x1− x′1, x3− x′3){[u2](x1, x3)− [u2](x′1, x′3)

−(x1− x′1)[u2],1(x′1, x′3)− (x3− x′3)[u2],3(x′1, x′3)} dx1 dx3

= − E(ρ ′)3−1

8π(1− ν2)

∫ α

0
{I1(θ, θ

′)f (θ)− I2(θ, θ
′)f (θ ′)− I3(θ, θ

′)f ′(θ ′)} dθ, (10)
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0
dρ

[
1

ρ

∂2

∂θ
{[u2](x′1, x′3)+ (x1− x′1)[u2],1(x′1, x′3)+ (x3 − x′3)[u2],3(x′1, x′3)}

−2
ρ

∂

∂θ
{(x1− x′1)[u2],1(x′1, x′3)+ (x3 − x′3)[u2],3(x′1, x′3)}

]α
θ=0

= − E(ρ ′)3−1

8π(1− ν2)
{[J1(α, θ

′)− J1(0, θ
′)]f (θ ′)

+ [J2(α, θ
′)− J2(0, θ

′)]f ′(θ ′)}, (11)

∫ α

0
(2ρ ′)dθ

[
∂2

∂ρ
{[u2](x′1, x′3)+ (x1− x′1)[u2],1(x′1, x′3)+ (x3− x′3)[u2],3(x′1, x′3)}

−2 ∂

∂ρ
{(x1− x′1)[u2],1(x′1, x′3)+ (x3− x′3)[u2],3(x′1, x′3)}

]
ρ=2ρ′

= − E(ρ ′)3−1

8π(1− ν2)
{J3(θ

′)f (θ ′)+ J4(θ
′)f ′(θ ′)}, (12)

∫ α

0
dθ
∫ ∞

2ρ′
ρ dρK∗(x1− x′1, x3− x′3)[u2](x1, x3)

= − E(ρ ′)3−1

8π(1− ν2)

∫ α

0
dθI4(θ, θ

′)f (θ), (13)

∫
M

K0(x1, x3; x′1, x′3)[u2](x1, x3)dx1 dx3 = (ρ ′)3−1
∫ α

0
dθK̃0(3; θ, θ ′)f (θ). (14)

The functionsI1 to I4, J1 to J4 andK̃0 are given explicitly in Appendix A. The homogen-
eous equation (5) now implies that∫ α

0
{I1(θ, θ

′)f (θ)− I2(θ, θ
′)f (θ ′)− I3(θ, θ

′)f ′(θ ′)} dθ

+
∫ α

0
I4(θ, θ

′)f (θ)dθ − 8π(1− ν2)

E

∫ α

0
K̃0(3; θ, θ ′)f (θ)dθ

+ [J1(α, θ
′)− J1(0, θ

′)+ J3(θ
′)]f (θ ′)+ [J2(α, θ

′)− J2(0, θ
′)+ J4(θ

′)]f ′(θ ′) = 0. (15)

It is appropriate to discuss the anticipated form off (θ). The regularization procedure
ensures that all integrals exist for anyθ ′ ∈ (0, α). The expression on the left side of (15)
could, however, become singular asθ ′ → 0 or θ ′ → α. Considering firstθ ′ → α, we may
verify that

J1(α, θ
′) ∼ −2(α − θ ′)−1 as θ ′ → α. (16)

Therefore, the left side of (15) has an unacceptably strong singularity, unlessf (α) = 0. This
is nothing more than the requirement that the relative displacement should tend to zero as the



Surface-breaking crack in an elastic half-space149

crack edge is approached it will be assumed without further discussion thatf (θ) has the form
(α − θ)1/2g(θ), whereg(θ) is bounded nearθ = α, consistent with the known behaviour of
the relative displacement near any smooth crack boundary. It can be verified similarly that

J1(0, θ
′) ∼ 2(θ ′)−1 as θ ′ → 0. (17)

There is, however, a compensating term that comes from the integral involving the ‘image’
termK̃0. In fact, asymptotically, forθ, θ ′ → 0,

K̃0(3; θ, θ ′) ∼ E

4π(1− ν2)

{
1

(θ + θ ′)2 −
12θθ′

(θ + θ ′)4
}
, (18)

which is consistent precisely with the ‘image’ term for the corresponding kernel for a crack in
two dimensions [8]∫ ∞

−∞
K0(x1, x3; x′1, x′3)dx1 = E

4π(1− ν2)

{
1

(x3+ x′3)2
− 12x3x′3
(x3+ x′3)4

}
. (19)

Asymptotically, therefore, asθ ′ → 0,

4π(1− ν2)

E

∫ α

0
K̃0(3; θ, θ ′)f (θ)dθ

∼ f (0)
∫ α

0

{
1

(θ + θ ′)2 −
12θθ′

(θ + θ ′)4
}

dθ = −f (0)
θ ′

. (20)

Thus, as expected, the opening of the crack at its intersection with the free surface is allowed
to be finite and non-zero.

The procedure now is to discretize (15), and to calculate the determinant of the resulting
matrix (A, say) multiplying the vector of nodal values off (θ ′) as a function of3. An approx-
imation to the desired eigenvalue is then delivered by a value of3 for which the determinant
vanishes.

The interval(0, α) was sub-divided intoN equal intervals{(θj−1, θj ); j = 1,2, . . . N},
where

θx = xh; h = α/N (21)

and (15) was satisfied at the mid-pointsθ ′ = θj−1/2 (j = 1,2, . . . N). Since all of the in-
tegrands are continuous, the simplest numerical scheme would be to evaluate the integrals by
the mid-point rule. However, the first group of terms, involvingI1, I2 andI3, have an apparent
singularity atθ = θ ′. We avoided evaluation of the integrand at pointsθ = θj−1/2 by a limiting
procedure by estimating the integral over thej th interval ash times the value of the integrand
at a pointθ∗j−1/2 different from the mid-pointθj−1/2. Because the integrand at least contains a
factor(α − θ)1/2 nearθ = α, θ∗j−1/2 was chosen so that

∫ θj

θj−1

(α − θ)1/2 dθ = h(α − θ∗j−1/2)
1/2 (22)
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exactly. Thus,

θ∗j−1/2 = α −
4

9h2
[(α − (j − 1)h)3/2− (α − jh)3/2]2. (23)

This quadrature rule is exact when the integrand has the forma(α−θ)1/2+b for any constants
a andb. It can be checked thatθ∗j−1/2 − θj−1/2 > 0, increases monotonically withj , and
θ∗N−1/2− θN−1/2 = 0·0555. . . h. The terms involvingf (θ ′) andf ′(θ ′) still require evaluation
of these functions atθ ′ = θj−1/2. These are expressed in terms of the unknownsf (θ∗j−1/2) by
use of simple extrapolations, based upon approximatingf (θ) in the vicinity of θj−1/2 as

f (θ) ≈ aj (α − θ)1/2+ bj , (24)

with aj andbj fixed by requiring equality atθ = θ∗j−1/2 andθ = θ∗j+1/2, with the convention
thatθ∗N+1/2 = α. Thus,

f (θ) ≈ f (θ∗j−1/2)[(α−θ)1/2−(α−θ∗j+1/2)
1/2]+f (θ∗j+1/2)[(α−θ∗j−1/2)

1/2−(α−θ)1/2]
(α−θ∗j−1/2)

1/2−(α−θ∗j+1/2)
1/2

, (25)

f ′(θ) ≈ [f (θ
∗
j+1/2)− f (θ∗j−1/2)](α − θ)−1/2

2[(α − θ∗j−1/2)
1/2− (α − θ∗j+1/2)

1/2] . (26)

Figure 3. detA as a function of3, for α = π/2,
ν = 0·3.

Figure 4. The singularity exponent3 as a function of
the Poisson ratioν, for α = π/2. The results obtained
by Benthem [1, 2] are marked by∗.

4. Numerical results

The results of numerical calculations are presented in Figures 3 to 5 which were obtained by
takingN = 100. In Figure 3 the values of the determinant ofA are plotted against3. The
smallest value of3 at which the determinant is equal to zero characterizes the singularity in
stresses at the corner point. Note that no values of3, with 0 > 3 > −1

2, at which detA = 0
were found. This means that the displacement field at the corner point is bounded.3

3 This confirms the results of [1, 2] and [5], but disagrees with those of [3, 4].
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Figure 5. The singularity exponent3 as a function of the angleα, for ν = 0·3. The result of Bažant and Estenssoro
[5] is marked by∗.

Figure 4 exhibits3 as a function of the Poisson ratioν. One can see that the values of
3 given by the numerical scheme above agree with those of Benthem [1] shown in Figure 4
by ‘∗’ for comparison. Note that similar values of3 have been also obtained by Bažant and
Estenssoro [5].4

In Figure 5 the exponent3 is plotted as a function of the angleα of inclination of the crack
edge. It decreases from 1 to12 whenα goes from 00 to ∼ 1100. In Figure 5 we also present
the result of Bažant and Estenssoro [5]. The angleα at which3 = 1

2 (i.e. at which the stress
singularity at the corner point is the same as at any other point at the crack edge) predicted
by the scheme above does not agree with that of [5] but it is much closer to the experimental
value∼ 1150 reported by Bell and Feeney [13].

A paper by Glushkov, Glushkova and Lapina [14] appeared after our calculations were
completed. Glushkovet al. treat a range of problems which involve corner points, including
the problem discussed in this article. Their method was, in essence, to apply a Mellin transform
to Equation (5) so generating an integral equation in the angular variable(θ in present nota-
tion). The corner singularity is analysed by making an assumption equivalent to our Equation
(9) Mellin transformed with respect toρ.

Glushkovet al.discretized their equation (relative to present notation) by expressingf (θ)

in the formf (θ) = θδ1(α − θ)δ2g(θ) for some smoothg(θ). They tookδ2 = 1
2 (c.f. the

present Equation (22)) but claimed a failure to obtain convergence with the choiceδ1 = 0.
Instead, their results were computed withδ1 = 1, with the built-in restriction thatf (0) = 0,
i.e. that the opening of the crack at the free surface associated with the most singular term is
zero. This is surprising physically and does not conform to what the present numerical scheme
generated. The computed values for3 (actually, Glushkovet al.gave 1−3) display the same
trends as in Figure 5 but are not in close agreement.

The method described above allows one to evaluate the stress singularity exponent3 − 1
at the corner point where the crack edge intersects the boundary. This method can also be
applied to a surface-breaking crack propagating dynamically in a plane orthogonal to the free
surface. The work is in progress.

4 Kawaiet al. [1] obtained3 = 0·3 for ν = 0 as the lowest root of the equation detA = 0. This disagrees with
Benthem [1, 2] and Bažant and Estenssoro [5], as well as with our solution.
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Appendix A

Here we give the representations for the quantitiesI1 to I4, J1 to J4 andK̃0 (formulae (10) to
(14)). They are as follows

I1(θ, θ
′) =

∫ 2

0

ρ̃3+1 dρ̃

(1+ ρ̃2− 2ρ̃ cos(θ − θ ′))3/2

= 3+ 1

1− cos(θ−θ ′)
∫ 1

0

t3

(1−t)3 [1−
1
2t (1+ cos(θ−θ ′))]3 dt−I4(θ, θ

′), (A1)

I2(θ, θ
′) = 1−3

sin2(θ − θ ′)
[
1− 1− 2 cos(θ − θ ′)√

5− 4 cos(θ − θ ′)
]

+3 cos2(θ − θ ′)
sin2(θ − θ ′)

(
1− 1√

5− 4 cos(θ − θ ′)
)

+ 23 cos(θ − θ ′) cos[2(θ − θ ′)]
sin2(θ − θ ′)√5− 4 cos(θ − θ ′)

+3 cos(θ − θ ′) ln

[√
5− 4 cos(θ − θ ′)+ 2− cos(θ − θ ′)

1− cos(θ − θ ′)
]
, (A2)

I3(θ, θ
′) = cos(θ − θ ′

sin(θ − θ ′)
(

1− 1√
5− 4 cos(θ − θ ′)

)

+ 2 cos[2(θ − θ ′)]
sin(θ − θ ′)√5− 4 cos(θ − θ ′)

+sin(θ − θ ′) ln

[√
5− 4 cos(θ − θ ′)+ 2− cos(θ − θ ′)

1− cos(θ − θ ′)
]
, (A3)

I4(θ, θ
′) =

∫ ∞
2

ρ̃3+1 dρ̃

(1+ ρ̃2− 2ρ̃ cos(θ − θ ′))3/2

=
∫ 1/3

0

(1− t)3+1 dt

t3[1− 2t (1− t)(1+ cos(θ − θ ′))]3/2 , (A4)

J1(θ, θ
′) = − 1

sin(θ− θ ′)
[

2− cos(θ − θ ′)√
5− 4 cos(θ − θ ′) + cos(θ − θ ′)

]

+3 sin(θ − θ ′) ln

[√
5− 4 cos(θ − θ ′)+ 2− cos(θ − θ ′)

1− cos(θ − θ ′)
]

+ 23 sin(θ − θ ′)√
5− 4 cos(θ − θ ′) , (A5)
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J2(θ, θ
′) = 1− 2 cos(θ − θ ′)√

5− 4 cos(θ − θ ′) − 1

−cos(θ − θ ′) ln

[√
5− 4 cos(θ − θ ′)+ 2− cos(θ − θ ′)

1− cos(θ − θ ′)
]
, (A6)

J3(θ
′) = 3

2

[
5

(
δθ ′,

8

9
,

2
√

2

3

)
+5

(
δα−θ ′,

8

9
,

2
√

2

3

)]

−(1+ 3
23)

[
E

(
δθ ′,

2
√

2

3

)
+ E

(
δα−θ ′,

2
√

2

3

)]

−1
3(1+ 53)

[
F

(
δθ ′,

2
√

2

3

)
+ F

(
δα−θ ′,

2
√

2

3

)]
, (A7)

J4(θ
′) = 3

2

(
1√

5− 4 cos(α − θ ′) −
1√

5− 4 cosθ ′

)
−3

2(
√

5− 4 cos(α − θ ′)−√5− 4 cosθ ′). (A8)

In (A7) E,F and5 are the elliptic integrals,δθ = sin−1{3√(1− cosθ)/[2(5− 4 cosθ)]}.
K̃0(3; θ, θ ′) is the Mellin transform ofK0(ρ, θ;ρ ′, θ ′) = (ρ ′)−3K0(ρ̃; θ, θ ′) with respect to
ρ̃ = ρ/ρ ′, with s = 3+ 2,

K̃0(3; θ, θ ′)

= − E

8(1− ν2)

3(3+ 1)

sinπ3

{
(1− 2κ)

P−1
3 (− cos(θ + θ ′))√
1− cos2(θ + θ ′)

+3(3+ 2)(1−3)
[
1− 1− cos(θ − θ ′)

1− cos(θ + θ ′)
]
P−2
3 (− cos(θ + θ ′))
1+ cos(θ + θ ′)

+4ν(1− 2ν)

{
[(3+ 2) cos2θ + (1−3) cos2 θ ′]P

−1
3 (− cos(θ + θ ′))√
1− cos2 (θ + θ ′)

+(3+ 2)(1−3)
[
−cos(θ + θ ′)(sin2 θ + sin2 θ ′)

1− cos(θ + θ ′) + cos(θ − θ ′)− cos(θ + θ ′)
1− cos(θ + θ ′)

]

×P
−2
3 (− cos(θ + θ ′))
1+ cos(θ + θ ′)

}
+ sinπ3

π3(3+ 1)

×
∫ ∞

0

12(1− ν)(1− 2ν)ρ̃3+1 dρ̃√
1+ ρ̃2− 2ρ̃ cos(θ + θ ′)

[√1+ ρ̃2− 2ρ̃ cos(θ + θ ′)+ ρ̃ sinθ + sinθ ′]2
}
. (A9)
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In (A9) P−1
3 , P−2

3 are the associated Legendre functions,κ = 3 − 4ν. By the coordinate
transformationρ̃ = (1− t)/t the last integral in (A9) is reduced to an integral over a finite
interval,∫ ∞

0

ρ̃3+1 dρ̃√
1+ ρ̃2− 2ρ̃ cos(θ + θ ′)[√1+ ρ̃2− 2ρ̃ cos(θ + θ ′)+ ρ̃ sinθ + sinθ ′]2

=
∫ 1

0

(1− t)3+1 dt

t3
√

1− 2t (1− t)(1+ cos(θ + θ ′))[√1− 2t (1− t)(1+ cos(θ + θ ′))

+t (sinθ ′ − sinθ)+ sinθ]2 ,

and it is evaluated numerically. The same coordinate transformation was used in (A4).
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